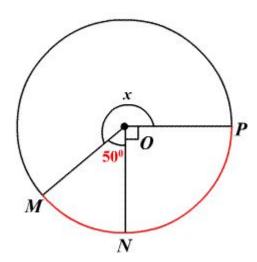


Math Virtual Learning

Geometry

May 5, 2020


Geometry Lesson: May 6, 2020

Objective/Learning Target: Find the measure of inscribed angles

Bell Ringer: Solve for the central angle "x"

Find the value of x.

Bell Ringer Answer:

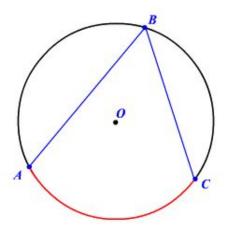
The sum of the measures of the central angles of a circle with no interior points in common is $360\,^\circ$. So,

$$m \angle MON + m \angle NOP + m \angle POM = 360^{\circ}$$

 $50^{\circ} + 90^{\circ} + x = 360^{\circ}$

Simplify.

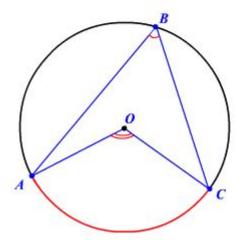
$$140^{\circ} + x = 360^{\circ}$$


Subtract 140° from each side.

$$x = 220^{\circ}$$

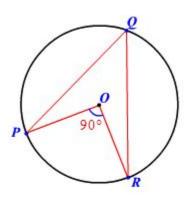
Inscribed Angles

An inscribed angle in a circle is formed by two chords that have a common end point on the circle. This common end point is the vertex of the angle.



Inscribed Angle Theorem:

The measure of an inscribed angle is half the measure of the intercepted arc.


That is,
$$m\angle ABC = \frac{1}{2}m\angle AOC$$
.

Example 1:

Find the measure of the inscribed angle $\angle PQR$.

By the inscribed angle theorem, the measure of an inscribed angle is half the measure of the intercepted arc.

The measure of the central angle $\angle POR$ of the intercepted arc \widehat{PR} is 90° .

Example 1 cont...

The measure of the central angle $\angle POR$ of the intercepted arc \widehat{PR} is 90° .

Therefore,

$$m\angle PQR = \frac{1}{2}m\angle POR$$

= $\frac{1}{2}(90^{\circ})$
= 45°

Practice

Click on the link below to practice and to check your understanding!

Inscribed Angles Practice (With Answers)